
Two packages: GenericTensorNetworks.jl

& TensorInference.jl

Computing solution space properties of combinatorial optimization 
problems via generic tensor networks (arXiv: 2205.03718)

Jin-Guo Liu∗, Xun Gao, Madelyn Cain, Mikhail D Lukin, Sheng-Tao Wang
∗QSTC & AMAT, Hong Kong University of Science and Technology (     Guangzhou)

Abstract Computational hard problems

jinguoliu@hkust-gz.edu.cn

GiggleLiu

arXiv: 2205.03718

We introduce a unified framework to compute the solution space and statistical 
properties of a broad class of combinatorial optimization problems. The solution 
space properties include finding one of the optimum solutions, counting the 
number of solutions of a given size, and enumeration and sampling of solutions of 
a given size. The statistical properties at finite temperature include sampling 
configurations, computing marginal probabilities and finding the most likely 
configuration. Using the independent set problem as an example, we show how all 
these properties can be computed in the unified approach of generic tensor 
networks.

Two open source Julia packages: GenericTensorNetworks.jl and TensorInference.jl 
are developed.

Eample: Finding a set of vertices in a graph that no two of them are 
adjacent.

The solution space properties
● Tier I: Find a best solution
● Tier II: Count the number of solutions of size k
● Tier III: Enumerate/Sample the solutions of size k

The statistical properties at finite temperatures
● Compute the partition function
● Find the (joint) marginal probabilities
● Given an evidence, find the most probable configuration
● Sample from thermal equilibrium

The maximum independent 
set size of a Petersen graph 
(above) is 4. It has 5 such 
equally good solutions.

Each vertex is a 
configuration

Darker nodes have larger 
population in the final stage of 
a stochastic optimization 
process.

Two configurations 
related by the update 
rules are connected by 
an edge

Highlights

(a) It is the method to analyse the 
quantum algorithm from the 
configuration space in Science 376, 
1209

(b) It can be used to study the overlap gap 
property

(c) Updated the record of  
2D Fibonacci number 
integer sequence, please 
refer: 

OEIS A006506

QuEraComputing/GenericTensorNet
works.jl , where you can find a 
category of problems solvable by 
generic tensor networks. Check the 
list ↗↗↗

Why not check out our Github repo?

julia> using GenericTensorNetworks, TensorInference, Graphs

julia> graph = Graphs.smallgraph(:petersen)
{10, 15} undirected simple Int64 graph

julia> problem = IndependentSet(graph; optimizer=TreeSA());    # to tensor network with optimized 
contraction

julia> contraction_complexity(problem)
Time complexity (number of element-wise multiplications) = 2^7.965784284662086
Space complexity (number of elements in the largest intermediate tensor) = 2^4.0
Read-write complexity (number of element-wise read and write) = 2^8.661778097771986

julia> solve(problem, CountingMax(2))[]  # property: counting configurations with maximum 2 sizes
30.0*x^3 + 5.0*x^4

julia> pmodel = TensorNetworkModel(problem, 3.0, mars=[[1], [2, 3], [3, 4]])    # statistical 
model at β = 3
TensorNetworkModel{Int64, OMEinsum.DynamicNestedEinsum{Int64}, Array{Float64}}
variables: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
contraction time = 2^9.061, space = 2^5.0, read-write = 2^9.656

julia> marginals(pmodel)    # marginal probabilities for variables [1], [2, 3] and [3, 4]
3-element Vector{Array{Float64}}:
 [0.625057241817197, 0.37494275818280304]
 [0.250114483634394 0.37494275818280304; 0.37494275818280304 0.0]
 [0.250114483634394 0.37494275818280304; 0.374942758182803 0.0]

julia> sample(pmodel, 3)     # sample at temperature 1/β
3-element TensorInference.Samples{Int64}:
 [0, 1, 0, 0, 0, 1, 0, 0, 0, 1]
 [0, 1, 0, 1, 0, 1, 0, 0, 0, 1]
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]

🎈 Recruiting both faculty and PhD

Julia REPL (Terminal)

#
mailto:jinguoliu@hkust-gz.edu.cn
#
#

