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Abstract

Computational hard problems

Eample: Finding a set of vertices in a graph that no two of them are
adjacent.

We introduce a unified framework to compute the solution space and statistical
properties of a broad class of combinatorial optimization problems. The solution
space properties include finding one of the optimum solutions, counting the
number of solutions of a given size, and enumeration and sampling of solutions of
a given size. The statistical properties at finite temperature include sampling

The solution space properties

e Tier I: Find a best solution

e Tier II: Count the number of solutions of size k

e Tier III: Enumerate/Sample the solutions of size k

configurations, computing marginal probabilities and finding the most likely
configuration. Using the independent set problem as an example, we show how all
these properties can be computed in the unified approach of generic tensor
networks.

The statistical properties at finite temperatures

e Compute the partition function

e Find the (joint) marginal probabilities

e Given an evidence, find the most probable configuration
e Sample from thermal equilibrium

The maximum independent
set size of a Petersen graph
(above) is 4. It has 5 such
equally good solutions.

Two open source Julia packages: GenericTensorNetworks.jl and TensorInference.jl
are developed.

Two packages: GenericTensorNetworks.jl
Julia REPL (Terminal)

& TensorInference.jl
julia> using GenericTensorNetworks, TensorInference, Graphs
julia> graph = Graphs.smallgraph (:petersen)
{10, 15} undirected simple Int64 graph
Problem julia> problem = IndependentSet (graph; optimizer=TreeSA()); # to tensor network with optimized
( ) contraction
Graph IndependentSet
( b Domiﬁggiyget julia> contraction complexity (problem)
random_regular_graph COlOFU%] Time complexity (number of element-wise multiplications) = 277.965784284662086
unspihfuiﬁgph MaxCut Space complexity (number of elements in the largest intermediate tensor) = 2%4.0
erdos_renyi Matching Read-write complexity (number of element-wise read and write) = 278.661778097771986
= Satisfiability
PaintShop
- J SetPacking julia> solve (problem, CountingMax(2))[] # property: counting configurations with maximum 2 sizes
SetCovering 30.0*x*3 + 5.0*x*4
- Y,
( solve J julia> pmodel = TensorNetworkModel (problem, 3.0, mars=[[1], [2, 3], [3, 411]) # statistical
Optimizers Property model at B = 3
[ ) ( )
Treath SizeMax TensorNetworkModel {Int64, OMEinsum.DynamicNestedEinsum{Int64}, Array{Float64}}
GreedyMethod StzeMin variables: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
KaHyBipartite CountingAll contraction time = 279.061, space = 225.0, read-write = 279.656
SABipartite CountingMax
" CountingMin julia> marginals (pmodel) # marginal probabilities for variables [1], [2, 3] and [3, 4]
N\ W, 1
GraphPolynomial 3-element Vector{Array{Float64}}:
SingleConfigMax [0.625057241817197, 0.37494275818280304]
SingleConfigMin [0.250114483634394 0.37494275818280304; 0.37494275818280304 0.0]
CO”ﬁQSM@‘ [0.250114483634394 0.37494275818280304; 0.374942758182803 0.0]
ConfigsMin
ConfigsAll
\ / julia> sample (pmodel, 3) # sample at temperature 1/

3-element TensorInference.Samples{Int64}:
[, 1, o, 0, 0, 1, 0, O, O, 1]
[, 1, o, 1, o, 1, 0, 0, O, 1]
[, o, o, o, o, o, o, 0, 0, 1]
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